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Understanding how climate change will shape species distributions in the
future requires a functional understanding of the demographic responses of
animals to their environment. For birds, most of our knowledge of how climate
influences population vital rates stems from research in temperate environ-
ments; even though most of the Earth’s avian diversity is concentrated in
the tropics. We evaluated effects of Southern Oscillation Index (SOI) and
local temperature and rainfall at multiple temporal scales on sex-specific
survival of a resident tropical bird, the Rufous-and-White Wren Thryophilus
rufalbus, studied over 15 years in the dry forests of northwestern Costa Rica.
We found that annual apparent survival of males was 8% higher than females,
more variable over time, and responded more strongly to environmental
variation than female survival, which did not vary strongly with SOI or
local weather. For males, mean and maximum local temperatures were
better predictors of survival than either rainfall or SOI, with high temperatures
during the dry season and early wet season negatively influencing survival.
These results suggest that, even for species adapted to hot environments,
further temperature increases may threaten the persistence of local
populations in the absence of distributional shifts.

1. Introduction
Knowledge of how climate influences survival and fecundity is necessary for
understanding the factors that limit species abundance and shape their distri-
butions. The ubiquity, diversity and wide-ranging life-histories and movement
strategies of birds have made them model organisms for studies of the conse-
quences of climate change for migration [1], population dynamics [2–4] and
species distributions [5,6]. However, the overwhelming majority of these studies
have focused on migratory species or residents of temperate environments.
Considering that avian diversity is higher in the tropics than anywhere else on
the Earth and that many tropical species are range-restricted [7,8], establishing
a better understanding of how climate influences demography of tropical bird
populations is essential for predicting consequences of future climate change
for the persistence of local populations and species as a whole.

To date, the few long-term, longitudinal studies aimed at elucidating the
effects of climate on demography of tropical bird species have revealed widely
varying population-level responses to environmental variation both within
and among species depending on habitat and species traits, such as diet and
geography [9–14]. For example, adult White-collared Manakins Manacus candei
in Costa Rica exhibited higher annual survival during cooler and wetter (positive)
phases of the Southern Oscillation Index (SOI), but this effect was only apparent
in young forests and not mature forest [10]. By contrast, adult male Wire-tailed
Manakins Pipra filicauda in Ecuador exhibited higher annual survival during
warmer and drier (negative) phases of SOI [12]. Two bird species in the Northern
Mariana Islands showed a positive relationship between survival and relative
dry-season greenness and a negative relationship between survival and relative
wet-season greenness, suggesting that consistent moderate conditions favour
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survival and that extreme rainfall events negatively affect
survival [13]. Whereas these results revealed relationships
between climate and survival, albeit in sometimes opposite
directions, only one of 20 bird species analysed in Panama
revealed a relationship between climate (length of the dry
season) and adult survival [11]. Coupled with growing evi-
dence of declines in tropical bird populations [15,16], the
observed variation in results of these studies highlights
the need for a clearer understanding of how the demography
of tropical bird populations responds to climatic variation at
different spatio-temporal scales.

Here, we evaluated the effects of climate (SOI) and local
weather (temperature and rainfall) at annual, seasonal and
monthly time scales on sex-specific annual apparent adult
survival of a resident tropical bird, the Rufous-and-White
Wren Thryophilus rufalbus. We collected 15 years of mark–
recapture/re-sighting data from a population living in tropical
dry forests in the Area de Conservación Guanacaste in north-
western Costa Rica. Tropical dry forests rank among the most
imperilled terrestrial habitats globally and climate change
threatens the persistence these forests [17] as well as some of
the species that inhabit them [18]. Whereas most studies that
have examined survival of tropical birds have generally only
considered broad-scale climate indices, we also evaluated
effects of local rainfall and temperature on survival and how
rainfall influences vegetation greenness, a proxy for resource
availability, to provide greater insight into the mechanisms
mediating effects of climatic variation on survival.

2. Material and methods
(a) Study species
Rufous-and-white Wrens are resident, insectivorous Neotropical
songbirds that inhabit the understory of tropical forests along the
Pacific coast of southern Mexico to Panama (figure 1a) as well as
parts of northern Colombia and Venezuela [19,20]. Annually,
Rufous-and-white Wrens build nests several weeks in advance of

the rainy season and begin laying and incubating eggs following
the first large rainfall, typically in early May in our study area.
Owing to high levels of nest predation (greater than or equal to
50% of nests are depredated each year [21,22]), pairs will often
attempt several nests per year, often continuing into August [23].
Rufous-and-white Wrens, like other understory insectivores, exhi-
bit low levels of breeding dispersal [24]. Low mobility makes this
species well-suited to demographic studies because measured
(apparent) survival should closely approximate actual survival
and because, with low levels of movement among populations
(immigration and emigration) [24], survival and recruitment will
be primary contributors to populations dynamics and persistence.
Low mobility also makes insectivorous birds highly vulnerable to
habitat disturbance and fragmentation [25,26], further emphasizing
the need for expanded knowledge of environment–demography
relationships for this and other tropical species.

(i) Study site and field methods
Our study took place in Sector Santa Rosa of the Area de Conserva-
ción Guanacaste in northwestern Costa Rica (108520 N, 858360 W;
figure 1b). Habitat in Santa Rosa is characterized by a lowland
tropical dry forest (elevation range¼ 225–290-m.a.s.l.) with a rela-
tively open understory, especially during the dry season [27,28].
Within the dry forest, Rufous-and-white Wrens inhabit the more
mature humid, evergreen sections (figure 1b). The dry season in
Santa Rosa typically extends from December to April and the wet
season from May to November, although the exact timing and dur-
ation of the seasons varies from year to year. Over the course of our
study, the first 100 mm of rainfall in the calendar year was reached
on 20-May (mean+ s.d. ordinal date¼ 141+12 days) and all but
the final 100 mm of rain had fallen by 06-November (mean+ s.d.
ordinal date¼ 310+11 days), resulting in an average (+s.d.)
wet season length of 170+18 days. Annual rainfall ranged from
660 to 3090 mm over the course of our study, with 5 years exceeding
2500 mm of rain (figure 2a).

We conducted mark–recapture/re-sighting surveys of
Rufous-and-white Wrens from 2003 to 2017. From 2003 to 2005,
our study area was 125-ha in size (figure 1b). In 2006, we expanded
the study area to 240 ha and continued to monitor this area
through to 2017 (figure 1b). Beginning in April of each year,

1 km 2 km0 km
(a) (b)

Figure 1. Distribution of Rufous-and-white Wrens in Central America and location of the study site. (a) Appearance and year-round distribution (orange) of Rufous-
and-white Wrens in Central America, which also includes parts of Colombia and Venezuela not shown here (species distribution data from [19]). (b) The study site in
Sector Santa Rosa of the Area de Conservación Guanacaste in northwestern Costa Rica (108520N, 858360W). The study site encompassed an area of 125 ha from 2003
to 2005 (yellow) which was expanded by approximately 115 ha (red) in 2006. The background satellite image in (b) was taken at the end of the dry season in May
2013, highlighting the limited availability and patchiness of evergreen forest in comparison to seasonal scrub forest. Photo in (a) courtesy of David Bradley.
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individuals were identified and captured using mist-nets. Each
captured individual was marked with a unique combination of
three plastic colour leg-bands and one aluminium leg-band and
standard morphometric measurements were taken. Males and
females were differentiated based on morphometric measure-
ments, the presence or the absence of a brood patch, as well as
sex-specific features of their songs [29–31]. Individuals that
could not be captured, at least initially, were uniquely identified
based on their consistent occupation of the same area or territory
and their individually distinctive vocalizations [29,30,32]. All
individuals in the population were identified by approximately
mid-April of each year. Daily observations of the population con-
tinued until the end of June and included recording the territory
centres of each bird using a hand-held Global Positioning
System. Non-territorial floaters are rare in this population [33].

(b) Environmental data
We used standardized monthly values of the SOI (downloaded
from http://www.cpc.ncep.noaa.gov/data/indices/soi) to
describe the climatic conditions at our study site, as with many
locations in the northern neotropics, Santa Rosa experiences
cooler and wetter conditions during positive phases of the Southern
Oscillation (La Niña) and warmer and drier conditions (El Niño)
during negative phases of the Southern Oscillation [34]. From
the standardized monthly values, we calculated average annual
(April–March), wet season (May–November) and dry season

(Apr, December–March) SOI for each year of the study. Climate
and weather data were summarized beginning in April to coincide
with the beginning of the mark–recapture/re-sighting period.

Daily maximum and minimum temperatures (8C) and rainfall
(mm) measurements were obtained from weather stations within
our study area operated by the Área de Conservación Guanacaste
(2003–2015) and by L. Fedigan, A. Melin and K. Jack (2015–2017).
Comparison of daily temperature and rainfall measurements
from the two stations in 2015 revealed similar measurements (elec-
tronic supplementary material, figure S1), justifying the use of
weather data from the latter station for the final 3 years of our
study (2015–2017). Daily mean temperature was calculated as
the mean of the daily minimum and maximum temperatures.
Daily mean and maximum temperatures were then averaged at
monthly, seasonal (wet/dry) and annual intervals (electronic sup-
plementary material, table S1). Rainfall was summed over the
same time intervals and we also calculated cumulative rainfall at
monthly intervals, beginning in April and extending through to
the following March (e.g. total rainfall for June was calculated as
the sum of daily rainfall in June, whereas cumulative rainfall for
June was calculated as the sum of daily rainfall in April, May
and June; electronic supplementary material, table S1).

We also used the local rainfall data to measure the timing and
duration of the wet season. Duration of the wet season was calcu-
lated as the number of days between when the first and last 50,
100 m and 150 mm of rainfall occurred in each year. Timing of
the onset (or end) of the wet season was measured as the ordinal
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Figure 2. SOI, local temperature and rainfall, and Enhanced Vegetation Index (EVI) measurements for Santa Rosa National Park, Costa Rica between 2003 and 2017.
(a) Time-series of seasonally averaged monthly SOI (black), seasonally averaged daily maximum (red) and mean (orange) temperatures and total annual rainfall
(blue). Monthly SOI and daily maximum and mean temperatures were averaged for the dry (April, December – March) and wet (May – November) seasons. Rainfall
was summed from April to the following March. (b) Z-scores of average annual mean daily temperature (orange) and total annual precipitation (blue) in relation to
annual average SOI. (c) Average monthly EVI in relation to cumulative rainfall from the previous month in the Santa Rosa study area. EVI plateaued between 500 and
1000 mm of cumulative rainfall, which was achieved in all but one of the study years. Curves in (b) and (c) were estimated from a local polynomial regression.
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date on which the first (or last) 50, 100, 150, 200, 250 and 300 mm of
rain had fallen. A full list of the eight climate and weather variables
included in our analyses and the timescales over which they were
summarized are presented in electronic supplementary material,
table S1.

Lastly, we extracted monthly, 1-km2 resolution Enhanced Veg-
etation Index (EVI) measurements from the Terra MODIS dataset
MOD13A3 [35] for the full 15-year study period to explore the
relationship between local rainfall and vegetation greenness in
our study area. MOD13A3 data were retrieved from the online
DAAC2Disk download manager, courtesy of the NASA EOSDIS
Land Processes Distributed Active Archive Center and USGS/
Earth Resources Observation and Science Center (https://lpdaac.
usgs.gov/data_access/daac2disk). Similar to Saracco et al. [13],
we removed cloud-contaminated pixels (pixel reliability code ¼
3), extracted monthly EVI values for the six 1-km2 pixels overlap-
ping our study area using R [36] and package ‘raster’ [37], and then
averaged values for the six pixels to acquire a monthly average
EVI. We related monthly EVI to cumulative rainfall for the pre-
vious month using local polynomial regression implemented
using the ‘loess’ function in R with a smoothing parameter (or
span) equal to 0.9 (figure 2c).

(c) Statistical analyses
We estimated sex-specific annual apparent survival and recap-
ture/re-sighting probabilities using a Cormack–Jolly–Seber
(CJS) model [38]. Hereafter, we use the word ‘survival’ in place
of ‘annual apparent survival’, and ‘re-encounter probability’ in
place of ‘recapture/re-sighting probability’. We analysed the
CJS model in a Bayesian framework using Markov Chain
Monte Carlo (MCMC) simulations, which we implemented in
JAGS [39] from R [36] using the package ‘jagsUI’ [40]. The CJS
model was formulated using a multinomial array [41,42].

To quantify temporal variability, survival w and re-encounter
probability p of each sex s was modelled on a logit scale as a
function of its mean m and temporal residual 1t:

logit(ws,tÞ ! mws
þ 1ws,t 1ws,t

! Nð0, s2
ws
Þ ð2:1Þ

and

logit(ps,tÞ ! m ps
þ 1 ps,t 1 ps,t ! Nð0, s2

ps
Þ ð2:2Þ

We evaluated effects of climate, local weather and seasonal
timing and duration on survival by fitting a series of univariable
models that included the climate and weather variables described
above (see also electronic supplementary material, table S1).
Relative variable importance was evaluated based on the magni-
tudes of the standardized slope estimates (bs in equation (2.3))
and their uncertainty (95% credible intervals). We also evaluated
the relative importance of variables using the indicator variable
method [43], which can be an effective means of identifying influ-
ential predictors under high estimation uncertainty [44]. By this
method, each covariate b is multiplied by an indicator variable g
that is drawn from a Bernoulli distribution with a prior probability
of 0.5. At each MCMC iteration, g takes a value of 1 or 0 causing
the variable to be included or excluded from the model, respect-
ively. If a variable is important for model fit, then g will be
included more times than not, causing the posterior mean of g
to approach 1. By contrast, a variable that does little to improve
model fit will often be excluded from the model, such that the
posterior mean of g will tend to 0. We only fitted models contain-
ing a single predictor variable at a time due to SOI, temperature
and rainfall being highly correlated (figure 2). The structure of
the models was as follows:

logit(ws,tÞ ! mws
þ gs $ bs $ Xt þ 1ws,t gs ! Bernoullið0:5Þ ð2:3Þ

Vague prior distributions were specified for all parameters:
mws

! Uniformð0, 1Þ; m ps
! Uniformð0, 1Þ; sws ! Uniformð0, 10Þ;

sps ! Uniformð0, 10Þ; bs ! Nð0, 104Þ½&5, 5'. We ran three inde-
pendent chains with different starting values for 250 000
iterations. We used a burn-in of 50 000 iterations and kept every
50th sample, resulting in 12 000 posterior samples for each
model parameter. For modelling, climatic and weather variables
were converted to z-scores by subtracting the mean of the variable
across all years from the value for each year and dividing by the
standard deviation of the variable across years, such that each vari-
able had a mean of 0 and standard deviation of 1. Convergence of
model chains was assessed using the Gelman-Rubin R̂ diagnostic
statistic [45]. In the results, we present estimated survival and re-
encounter probabilities on the real scale, whereas effect size and
variance estimates are on the logit scale.

Goodness-of-fit of the CJS models was evaluated using the
Freeman–Tukey statistic [46]. With this method, expected data
simulated from the CJS model are compared to the observed data.
Bayesian p-values greater than 0.5 indicate that the expected data
are more variable than the observed data, whereas p-values less
than 0.5 indicate that expected data are less variable than the
observed data. A model that fits the data perfectly will result in a
Bayesian p-value of 0.5. We found no evidence of lack of fit for
any models. For the null model (equation (2.1)), Bayesian p-values
were 0.58 for females and 0.41 for males (electronic supplementary
material, figure S2). Across all models that contained environmental
covariates, Bayesian p-values averaged 0.41 for males (range¼
0.32–0.60) and 0.58 for females (range¼ 0.51–0.62).

3. Results
From 2003 to 2017, we marked and monitored the survival of
a total of 314 Rufous-and-white Wrens (175 males and 139
females). The number of wrens monitored each year ranged
from 22 to 70, with an average of 44. Mean annual survival
probability of Rufous-and-white Wrens over the 15-year
period was 0.60 [95% credible interval (CI) ¼ 0.52, 0.68] for
males (m̂wm

) and 0.52 [95% CI ¼ 0.44, 0.59] for females (m̂wf
), a

difference of 8% between the two sexes (Pr[m̂wm
. m̂wf

] ¼
0.94; figure 3). Survival of males was more variable over time
compared to females (ŝwm ¼ 0.42 versus ŝwf ¼ 0.22;
Pr[ŝwm . ŝwf ] ¼ 0.79). Of the 160 wrens encountered in more
than 1 year of the study, 55% remained within 100 m of
where they were initially encountered, 26% had a net dispersal
of 100–400 m, and 14% had a net dispersal of 400–1000 m.
Only 6% (n ¼ 9) dispersed greater than 1 km. Re-encounter
probabilities were high for both sexes (m̂ pm

¼ 0.96 [95% CI ¼
0.87, 0.99] versus m̂ pf

¼ 0.93 [95% CI ¼ 0.80, 0.99]).
Annual survival of male Rufous-and-white Wrens was

related to SOI during the wet season, whereas female survival
was unrelated to annual or seasonal SOI (figure 4). Male
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Figure 3. Sex-specific annual apparent survival probabilities of Rufous-and-
white Wrens in Santa Rosa National Park, Costa Rica between 2003 and 2017.
Male (blue) and female (maroon) survival were estimated using a Cormack –
Jolly – Seber model.
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survival was positively related to wet-season SOI, primarily in
August and September (figure 5). Consistent with positive
phases of the SOI coinciding with cooler and wetter weather
in Santa Rosa (figure 2b), male survival was negatively related
to temperatures during the wet season (figure 4). Effects of
rainfall on male survival were strongest for May and July
(figure 5), but were overall weaker than effects of temperature.
Female survival was unrelated to annual and seasonal temp-
eratures and rainfall (figure 4). The only wet season weather
variable for which there was some, albeit weak, evidence of a
relationship to female survival was total September rainfall
(b̂ ¼ 0.33, 95% CI ¼ 0.02, 0.66; electronic supplementary
material, figure S3). In 2006, 2009 and 2011, over 500 mm of

rain fell in September compared to less than 400 mm in all
other years. This coincided with an increase in female survival
of 2.6%, 1.4% and 4.0% above the long-term average.

Although we did not find evidence for an effect of
dry-season SOI on male survival, temperatures during this
season had a strong negative effect on male survival
(figure 4). In particular, mean and maximum temperatures
in April, coinciding with the end of the dry season, had the
strongest effects of any climatic or local weather variable on
male survival (figure 5). The weakest temperature effects
were in October, November and December, coinciding with
peak rainfall, the end of the wet season and beginning of the
dry season, respectively (figure 5). We found no evidence for
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effects of dry season temperature on female survival (figure 4).
There was some evidence of a positive relationship between
February precipitation and female survival (b̂ ¼ 0.41,
95% CI ¼ 0.04, 0.91; electronic supplementary material,
figure S3), but this pattern was primarily due to 2 years
(2006 and 2011) in which 10–15 mm of rain fell in February
(compared to less than 2 mm in all other years). In those
same years, female survival was 2.6 and 4.0% higher than
the long-term average.

We found some evidence for timing of the onset of the wet
season influencing annual survival of males. Male survival was
higher when the first 150–250 mm of rain fell earlier in the year
(b̂ 150mm ¼ 20.28, 95% CI ¼ 20.56, 20.01; b̂ 200mm¼ 20.27,
95% CI ¼ 20.56, 0.0; b̂ 250mm ¼ 20.29, 95% CI ¼ 20.60, 0.00;
electronic supplementary material, figure S4), but, as with
cumulative and total rainfall, timing of the onset of the wet
season was a weaker predictor of male survival than tempera-
ture. Timing of the end of the wet season and total duration
of the wet season were not strong predictors of Rufous-and-
white Wren survival for either sex, nor was the start of the
wet season for female survival (electronic supplementary
material, figure S4).

4. Discussion
Our results show that local temperatures, particularly during
the dry season and early wet season, are important predictors
of annual apparent survival of adult male Rufous-and-white
Wrens, with higher temperatures leading to lower survival.
There was also evidence that average wet season SOI, rainfall
during the early wet season and timing of the onset of the wet
season influenced male survival, but generally these effects
were weaker when compared with those of temperature.
Similarly, length of the wet season did not strongly influence
adult survival of either sex [11]. Although broad-scale climate
indices are often better at predicting population processes
than local weather [47], and have been shown to predict
survival of several tropical birds [10,12], our results show
the value of including both local and broad-scale climate
and weather measurements when available.

In contrast to male survival, female survival was relatively
insensitive to both local weather and broad-scale climatic vari-
ation. On average, female survival was 8% lower than male
survival, a similar difference to that observed between male
and female Buff-breasted Wrens Cantorchilus leucotis [48].
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Figure 5. Effects of monthly SOI and local weather on annual apparent survival of male Rufous-and-white Wrens. Points show slope estimates (+ 95% CI) from
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This, coupled with the result that survival of females was also
more constant over time relative to males, suggests a limiting
factor that was relatively constant among years, which may
have overridden local- and broad-scale climate effects. One
such possibility is that females suffer higher costs of reproduc-
tion compared with males. Tropical birds often exhibit high
nest predation rates and high re-nesting rates, both generally
[49–51] and in our study population specifically [21]. In species
where females perform all of the incubation and the majority
of nestling provisioning, such as Rufous-and-white Wrens
[31,52], this may result in females incurring high reproductive
costs which could lead to higher mortality after breeding com-
pared with males. However, identifying how differential costs
of reproduction between males and females could contribute to
sex differences in survival is complicated by the fact that costs
of reproduction may also vary with climate and other environ-
mental factors. Future studies examining drivers of the costs
of reproduction in tropical species and impacts of costs of
reproduction on other demographic processes are needed.

The positive relationship between SOI and annual survival
that we observed contributes to a growing understanding of
how climate influences demography of tropical bird species.
The pattern of higher survival during cooler and wetter (posi-
tive) phases of the SOI is consistent with that observed for
White-collared Manakins in young forest in northeastern
Costa Rica [10], but opposite to that observed for Wire-tailed
Manakins in Ecuador, which had higher survival during
warmer and drier (negative) phases of the SOI [12]. For
insectivores in dry forests, such as Rufous-and-white Wrens,
survival may be higher when conditions are cooler and
wetter due to reduced heat-induced thermoregulatory costs
[53]. Indeed, resident tropical species and insectivores have
lower basal metabolic rates compared with migrants and frugi-
vorous/granivorous species, respectively, suggesting their
ability to tolerate thermal fluctuations may be more limited
[8]. That temperature had a stronger influence on survival com-
pared with rainfall lends further support to thermoregulatory
costs as a contributor to the observed climate and weather
effects on survival. An important implication of this result is
that, even for species accustomed to living in hot environ-
ments, temperature increases may threaten the persistence of
local populations in the absence of distributional shifts.

Food availability is another mechanism that could explain
increased survival during cooler and wetter conditions.
Insect abundance in the understory has been shown to increase
with moisture in the Guanacaste region [54], suggesting that
conditions that are wetter, but not so wet as to limit access to
food by inhibiting foraging [55], could improve survival
through increased food availability [56]. However, evidence
from a comparative study of Rufous-and-white Wren and
Buff-breasted Wren reproductive biology in Columbia found
that insect abundance in the leaf litter, where Rufous-and-
white Wrens primarily forage, did not vary between wet and
dry seasons [22]. Moreover, we found that vegetation green-
ness, a proxy for resource availability, in Santa Rosa
plateaued between 600 and 1000 mm of cumulative rainfall
(figure 2c). This amount of rainfall was surpassed in all but
one of the study years (figure 2a), implying that, even in the
driest of years, conditions were sufficiently wet to provide
the resources necessary for survival. These two pieces of evi-
dence, coupled with the result that both the amount of
rainfall and the timing and duration of the wet seasons had
weaker effects on survival compared with temperature,

provide further evidence that higher thermoregulatory costs
associated with hot temperatures was likely the main mechan-
ism by which climate and weather limited survival.

The opposite effects of SOI on survival of two frugivorous
manakin species observed by Wolfe et al. [10] and Ryder &
Sillett [12] points to the importance of considering how vari-
ation in SOI manifests locally. Indeed, Wolfe et al. [10] found
little effect of SOI on manakin survival in mature forests
despite strong effects on survival in young forests, showing
that responses to climate can vary within species and over
small spatial scales. Vast differences in average annual rainfall,
which exceeds 5000 mm in northeast Costa Rica compared
with under 3000 mm in Ecuador, might explain the opposite
effects of SOI on manakin survival if manakins in Ecuador
are less adapted to cooler and wetter conditions compared
with those in northeast Costa Rica which experience almost
double the annual rainfall. Whatever the cause of the discre-
pancy, variation in responses to climate among and within
species seen by comparing our results with those of previous
studies [10–13], highlights the need to consider the local
environment, such as forest type (open versus closed and dry
versus wet), elevation [55] and species traits, such as their
diet and foraging behaviour [11], when predicting and inter-
preting effects of climate on the dynamics of tropical bird
populations. The observed diversity of responses to climatic
variation similarly highlights the need to study a broader
range of species that represent the range of life histories and
habitats in the tropics. Such studies are needed in order to
detect emergent patterns of how climatic variation shapes
population dynamics across tropical taxa.

In summary, our results provide much-needed infor-
mation on the demography of a tropical bird, including sex
differences in survival and the effects of climatic variables
at different spatio-temporal scales thereon. Although declines
of tropical bird species have primarily been attributed to
direct habitat loss and degradation caused by humans, the
observed negative effects of increased temperature on survi-
val in an undisturbed habitat reveals a mechanism by
which climate change could drive future population declines
in the tropics independent of habitat loss. That the distri-
bution and composition of tropical dry forest itself will
likely shift with climate change [17] is likely to only exacer-
bate the problem in the absence of concurrent distributional
shifts by the species that inhabit these forests. Future studies
that consider climate and local weather effects on all vital
rates simultaneously, and how those vital rates contribute
to population growth rate, will further clarify the popula-
tion dynamical consequences of short-term variation and
long-term trends in climate for tropical species.
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