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Introduction

Abstract

Although free-roaming cats can have a significant impact on the environment, and
substantial resources have been invested to find humane alternatives for managing
free-roaming cat populations, there are no empirical estimates of free-roaming cat
population size in medium to large cities. In addition, little is known about factors
limiting free-roaming cat population size and distribution. Using Guelph, ON,
Canada (pop: 120 000; 86.7 km?) as a case-study, we apply replicated distance
transect sampling and likelihood-based hierarchical modelling to compare human-
mediated landscape patterns of land use, distance to roads, distance to wooded
areas, building density and socio-economic status to explain the abundance of free-
roaming cats. We then derive an empirical estimate of total population size and
present a spatially explicit prediction of free-roaming cat density across an entire
city. Cat abundance was highest in residential areas and lowest in commercial and
institutional areas, negatively related to median household income, and positively
related to distance from woods and building density. Total population size was
estimated to be 7662 (95% bootstrap CI: 6145-9966) for Guelph; free-roaming cat
density varied from O to 49.4 cats per ha. Our estimate overlapped with an inde-
pendent estimate of indoor-outdoor cats (11 927; 95% CIL: 6361-20 989) derived
from random surveys of city residents, which implies our distance transect method-
ology was relatively robust and unbiased. Our approach used simple geographical
information that is readily available for most urban areas in North America and
can be applied broadly to inform cat management in urban areas. Finally, our
results suggest that free-roaming cat density in cities could be determined by bot-
tom-up processes (e.g. enhanced food availability in residential areas) as well as
top-down processes (e.g. enhanced susceptibility to coyote predation near wooded
areas) which are typically reserved to explain wildlife populations in natural
environments.

ance of predators (Crooks & Soulé, 1999) and breeding
opportunities (Finkler ez al., 2011a). Identifying human- or

Free-roaming domestic cats Felis catus are abundant in
urban environments (Schmidt, Lopez & Collier, 2007a; Sims
et al., 2008), can have adverse environmental impacts (van
Heezik et al., 2010; Blancher, 2013; Loss, Will & Marra,
2013) and pose risks to public health (Gerhold & Jessup,
2013). Addressing these impacts, coupled with objections to
euthanizing individuals, underscore the challenge of identify-
ing socially acceptable approaches to manage free-roaming
cat populations (Levy & Crawford, 2004; Stoskopf & Nutter,
2004). Achieving an acceptable approach first requires robust
estimates of cat population size. Cat abundance is likely to
vary based on human-ownership patterns (Sims et al., 2008),
access to food (Calhoon & Haspel, 1989; Mirmovitch, 1995)
and veterinary care (Finkler, Hatna & Terkel, 2011a), avoid-
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environment-mediated limiting factors is important because
decision-makers must choose among several, often compet-
ing and emotionally charged, interventions that target differ-
ent demographic vital rates that influence population
abundance (Andersen, Martin & Roemer, 2004; Budke &
Slater, 2009; Schmidt ef al., 2009; McCarthy, Levine &
Reed, 2013; Miller ef al., 2014). For example, recent cost-
benefit analyses to address free-roaming cat populations have
focused on how resources should be allocated towards trap-
neuter-return programmes of feral cats, trap-euthanasia pro-
grammes, adoption programmes for socialized stray cats or
subsidization of spay/neuter programmes for indoor-outdoor
cats (Frank & Carlisle-Frank, 2007; Lohr, Cox & Lepczyk,
2013). These decisions hinge on accurate and robust
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estimates of population size, with associated confidence
intervals. In addition, predictive surfaces of population den-
sity across entire cities are critical for spatial allocation of
scarce resources to guide optimal interventions (Stoskopf &
Nutter, 2004; Loyd & DeVore, 2010).

Quantifying population size of cats is challenging for a
number of reasons. In urban areas, free-roaming cats are
comprised of stray, feral and owned (indoor-outdoor) indi-
viduals (Levy & Crawford, 2004). Cats from these groups
have different outdoor activity patterns (Clancy, Moore &
Bertone, 2003) and home ranges (Schmidt et al., 2007a;
Horn et al., 2011) that presumably would influence rates of
temporary emigration from the sampling location (Chandler,
Royle & King, 2011). Furthermore, akin to most wildlife,
cats are not detected perfectly by observers (Schmidt, Pierce
& Lopez, 2007b; Cruz, Glen & Pech, 2013) but, contrary to
most wildlife, some cats may have intermittent outdoor
access based on the behaviour of their owners and not be
continuously available for detection (Clancy et al., 2003).
These factors highlight the need for estimates of population
size to account for the observation process (Buckland et al.,
2001; Royle, Dawson & Bates, 2004). Robust estimates of
free-roaming cats in large urban areas also require replicated
samples across a range of land uses, comparison of models
to explain population abundance, and the ability to extrapo-
late estimates to areas that were not sampled to infer cat
population abundance across an entire urban landscape. Dis-
tance sampling is a robust method to account for these sam-
pling challenges and is amendable to testing biological
hypotheses regarding cat abundance via model selection
(Buckland et al., 2001).

In this paper, we use five variables to explain spatial vari-
ation in free-roaming cat population density in urban areas.
The first is land use patterns where we predicted highest cat
ownership in residential areas dominated by indoor-outdoor
cats and where, presumably, unowned cats have access to
intentionally provided food (Sims et al., 2008) or trash (Cal-
hoon & Haspel, 1989) and higher abundance of wild prey
(e.g. non-native rodents and urban-adapted birds attracted to
bird feeders; Fuller et al., 2008). The second is socio-eco-
nomic status where we predict a higher abundance of cats in
low socio-economic neighbourhoods where the probability of
cats being sterilized by their owners is lower (Finkler, Hatna
& Terkel, 2011b). The third is building density where we
predict a higher abundance of indoor-outdoor cats in areas of
higher building density (Sims ez al., 2008). In large urban
areas, a heterogeneous mixture of land uses, building density
and socio-economic levels need to be considered as they
could result in complex spatial population densities of cats
(Finkler et al., 2011b).

The other two variables were distance to environmental
landscape features such as wooded areas and major roads.
Fewer cats would be expected near wooded areas may reflect
exposure to predators (i.e. coyotes; Atwood, Weeks & Gehr-
ing, 2004; Gese, Morey & Gehrt, 2012) that use these habi-
tats (Crooks & Soulé, 1999; Gehrt ef al., 2013; Kays et al.,
2015). However, cats may be attracted or repelled from
wooded areas if birds occupying wooded areas were more or
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less abundant than adjacent built-up areas. Similarly, cat den-
sities may be higher or lower near major roads. We would
predict fewer cats near major roads either if cats avoided
roads or cats near roads had higher mortality rates (Caro,
Shargel & Stoner, 2000; Taylor et al., 2002; Klar, Herrmann
& Kramer-Schadt, 2009). Alternatively, cats may be more
abundant if food availability was higher or if exposure to
competitors and predators was lower near major roads. Of
course, all of the variables we considered are not mutually
exclusive, as the abundance and distribution of cats could be
influenced by human-mediated and environmental factors
simultaneously (Odell, Theobald & Knight, 2003).

Here, we first use replicated distance-based transect sam-
pling and likelihood-based hierarchical modelling to examine
five variables to explain free-roaming cat population density.
We then use published data to estimate the proportion of
cats that are available for detection to derive an empirical
estimate of total free-roaming cat population size and a spa-
tially explicit estimate of free-roaming cat density across a
large city. Finally, we compare our population estimate to an
independent estimate of the number of indoor-outdoor cats
derived from random surveys of city residents to examine if
the distance transect sampling methods employed are ade-
quate for estimating free-roaming cats in urban areas.

Materials and methods

Study area and geographical data

We conducted our study in the city of Guelph, ON
(43.55°N, 80.25°W), a 8671 ha urban centre in an eastern-
forested eco-region with a population of 120 000 people.
The city is characterized by single-family residences, a uni-
versity institution with enrolment of ¢. 25 000 students, and
a small downtown (c. 15 ha). Spatial datasets for land use,
median income, wooded areas, buildings and major roads
(Fig. 1) were entered into a geographical information system
(Supporting Information Table S1), overlaid with the transect
routes (see below) to obtain route-level covariate values, and
used to develop city-wide predictive estimates of free-roam-
ing cat population density. Original vector datasets (Fig. 1)
were converted into raster layers using the Feature to raster
tool in ArcMap 10.1 (ESRI 2012) with a resolution of 1 ha.
For each cat transect route, we extracted the mean covariate
value using the isectliners tool (Beyer, 2011).

We obtained land use data from 2011 but omitted agricul-
tural and other land uses (e.g. landfills, aggregate resource
extraction) within city limits due to safety concerns or pri-
vate-property access that prevented sampling these areas for
free-roaming cats; these land uses (combined 518 ha) were
assumed to have no cats (Supporting Information Table S1).
Our reduced land use dataset covered 8153 ha and had five
categories: commercial, industrial, institutional, parks and
residential (Fig. 1). Median income data for dissemination
areas were obtained from 2006 Canada Census data
(Supporting Information Table S1) and linked to spatial
coordinates using cartographic boundary files (Fig. 1). Road
data were line features of highway and major road casements
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Figure 1 Explanatory variables to explain
free-roaming cat density in the city of
Guelph, ON. The location of five land uses
(a) and the histogram (b) of land uses area
(multiple colours, left axis) and the num-
ber of transect routes (grey, right axis).
White areas were either agricultural or
other (e.g. landfills) and were omitted
because they could not be sampled.
Statistical models supported pooling
commercial and institutional land use
areas to explain free-roaming cat density.
Median income for areas in Guelph (c)
and the histogram (d) of the median
income values for 1 ha raster cells across
the entire city (green, left axis) and the
number of transect routes (grey, right
axis). The location of buildings (e) and the
histogram (f) of building density (brown,
left axis) and the number of transect
routes (grey, right axis). The location of
major roads in the city of Guelph (g) and
histogram (h) of the distance to major
roads for 1 ha raster cells across the
entire city (red, left axis) and the number
of transect routes (grey, right axis). The
location of wooded areas in Guelph (i) and
histogram (j) of the distance to wooded
area for 1 ha raster cells across the entire
city (green, left axis) and the number of
transect routes (grey, right axis).
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Figure 2 The mean (line) + st (shaded) half normal function show-
ing the probability of detection (P) of a free-roaming cat by distance
for land use patterns classified into two categories: commercial,
institutional and industrial land uses (blue) and parks and residential
land uses (green).

(Supporting Information Table S1) and for each raster cell
we calculated the distance in metres to the nearest major
road feature using the Euclidean distance tool in ArcMap
(Fig. 1). Wooded areas were polygons of forest at least 2 m
in height (Supporting Information Table S1) and for each
raster cell we calculated the distance to the nearest wooded
area using the Euclidean distance tool (Fig. 1). Points of
buildings (Supporting Information Table S1) were summed
for each raster cell to provide a measure of building density
(Fig. 1).

Distance transect sampling

Between July 7, 2014 and August 28, 2014, we counted cats
along routes using distance sampling and assumed cats were
detected independently (Buckland e al., 2001; Schmidt
et al., 2007b). To derive sampling routes (transects) we used
the genstratrandompnts function (Beyer, 2011) to generate
stratified-random points across land uses and snapped points
to the nearest road or trail (parks only). We then demarcated
routes of c¢. 2 km to encompass the designated land use
(Table 1). Routes were not straight lines but, rather, were
loops that allowed us to walk two consecutive replicates.
Each replicate took on average 22 min (sp = 11) to com-
plete, at a speed of ¢. 5 km h™" in the morning (start time
06:16-09:28) or evening (start time 17:25-20:38). Mornings
and evenings were chosen to maximize the chance of
observing cats which, we reasoned, was a balance between
matching maximum cat activity levels (crepuscular and noc-
turnal periods; Horn et al., 2011; Kays et al., 2015) and
having enough daylight for observers to see the cats. For
each cat observed, we recorded the replicate (1 or 2) and the
perpendicular distance off the transect line using a handheld
rangefinder (Buckland er al., 2001). An empirical sightings
histogram (Supporting Information Fig. S1) indicates that
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most cats are up to 5 m off the line so we accounted for this
possibility using a 5 m left-truncation point and rescaled the
distance data (Alldredge & Gates, 1985). An explanation of
how we met the assumptions of distance sampling is pro-
vided in the Supporting Information.

Repeated distance sampling is often done between seasons
or years because counts are expected to vary based on tem-
porary random emigration of individuals (Chandler ez al.,
2011). For our purposes, ‘temporary emigration’ could result
both from emigration per se but also from indoor-outdoor
cats being taken inside by their owners (Clancy et al.,
2003). Since transects were conducted back to back over
<1 h, we assumed they were simply replicated counts that
would reduce variation in estimating site-level population
size. To this end, we stacked our replicated data after testing
for homogeneity in the replicated counts using the difference
in Akaike information criterion (AAIC = 0.6; Burnham &
Anderson 2002), which has been justified in situations with
sparse count data (Yamaura ef al., 2011; Linden & Roloff,
2013).

One unique characteristic of sampling cat populations in
urban areas is that their ‘availability’ could be strongly
dependent upon humans. For instance, owned cats given out-
door access have a certain probability of being sampled
dependent upon the length of time they are left outside and
the duration of sampling; we assumed that most of the cats
we observed were indoor-outdoor cats. In cases where
objects are not continuously available for detection, Buck-
land er al. (2001) suggested that abundance estimates from
line transect surveys could be adjusted based on a known
abundance. This would provide the ability to calculate the
proportion of known individuals available for detection,
which can serve as a multiplier on abundance.

To estimate the proportion available for detection, we
used two approaches. First, we used data from Schmidt ez al.
(2007h) who compared observed counts of radio-collared
cats from 20 distance transect surveys in Caldwell, Texas,
U.S.A with the actual number radio-collared cats known to
be in the study area, as determined through radio telemetry.
From this, we fit an intercept-only logistic regression to
model the proportion of cats available to be detected, termed
c. The estimate of the proportion of cats available to be
detected during transects was ¢ = 0.051 (95% CI: 0.034-
0.075). Dividing our distributional population abundance
estimates derived from the transect data by mean estimate of
¢ represents a corrected free-roaming cat population abun-
dance. This approach assumes similar behaviour of free-
roaming cats in Texas compared to Ontario, which could be
violated if differences in weather, habitat, or cat owner beha-
viour (e.g. Clancy et al., 2003) between these sites influ-
ences estimates of availability. However, we are not aware
of any evidence of how these factors may specifically play a
role in availability estimates and is therefore justified based
on consistent season, daily timing of surveys and not
sampling during inclement weather between our study and
that of Schmidt et al. (2007b). Second, we validated the
proportion of cats available for detection by dividing our
city-wide free-roaming cat population estimate derived from

Animal Conservation ee (2016) ee—ee © 2016 The Zoological Society of London
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Table 1 Summary statistics of the transects done in different land uses including the number of routes, mean and standard deviation route
length and the total number of cats observed and the mean (range) of the number of cats seen on each replicate in Guelph, ON

Replicate 1 Replicate 2
Land use N Transect length (km) mean + so Total cats Mean cats (range) Total cats Mean cats (range)
Commercial 22 1.1 +£ 0.64 1 0.05 (0-1) 0 0 (0)
Industrial 16 2.0 + 0.80 16 1.00 (0-5) 11 0.69 (0-5)
Institutional 25 1.1 £ 0.69 2 0.08 (0-1) 2 0.08 (0-1)
Parks 23 1.4 + 0.96 3 0.13 (0-2) 2 0.09 (0-1)
Residential 59 2.1 +0.45 78 1.32 (0-12) 64 1.08 (0-6)

the distance sampling data by an independent estimate of
indoor-outdoor population size in Guelph (see below). Over-
lap in the proportion of cats observed to that derived from
data in Schmidt ez al. (2007b) would provide support for our
estimate of the proportion of cats available for detection.

Statistical analysis

We used count distance sampling (function gdistsamp) in the
unmarked package (Fiske & Chandler, 2011) in Program R
(R Core Team 2014) to fit hierarchical models using maxi-
mum likelihood. The hierarchical model uses counts of indi-
viduals at i=1, 2, ..., R routes to separate the state
processes of population abundance while accounting for the
observation process of the counts made during sampling
(Royle et al., 2004). The two-level hierarchical model con-
tains sub-models for the probability of detection (P) and
abundance (A; Royle et al., 2004; Chandler et al., 2011)

N; ~ Negative Binomial(X, o)

y; ~ Multinomial (N;, ;)

where N; is the population at site i with mean A and disper-
sion parameter o and y; is a vector of counts at route i that
arise conditional on N;, and m; is the vector of multinomial
cell probabilities of the detection probability (P;). The detec-
tion probability was modelled using the half-normal detection
function g(r) = exp(—r?/207), where r is the perpendicular
distance and o; is the scale parameter at site 7, and the multi-
nomial cell probabilities were derived by integrating g(r, c;)
over the area (A)) of distance class j defined by the distance
break-points. Population density (D) was estimated across the
actual transect area (A) as D= X/A (Chandler et al., 2011).

As an initial step to assess the distribution of the count
data, we compared a null model (A" p’) under a Poisson and
negative-binomial mixture distribution and retained this form
throughout the analysis. Our data were zero-inflated and
were, therefore, best fit using the negative-binomial com-
pared to the Poisson model (AAIC = 77), which requires the
dispersion parameter (o) to be estimated.

The probability of detection during counts (P) is the
monotonically decreasing probability of detecting an animal
that is present given an increasing distance to the observer
denoted by the scale parameter [In (c); Buckland er al.,
2001]. Given that our sampling was stratified by land use,
we considered two simple models to explain variation in p
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with land use pooled into two categories. The first model
(pResid-Park.Othery ofiected the short sight-lines in parks and
residential areas caused by trees/vegetation in parks or fences
of residences that restricted observations. In contrast, longer
sight-lines occurred in commercial, industrial and institu-
tional areas because building density is low and open spaces
between and around buildings are large. The second model
(pResidotheny considered differences between residential areas
compared to all others (commercial, industrial, institutional
and parks). Residential areas were quite cluttered and com-
plex (e.g. cars, trees, fences) compared to the simple, rather
homogenous structure of the observation area in all other
land use types (e.g. unobstructed building fronts and alley
ways, open fields, parking lots).

Once we had formulated the best model to explain detec-
tion probability, our goal was to test five variables to explain
free-roaming cat density in urban areas. The null model con-
sidered density as a constant value across the city (4; Sch-
midt er al., 2007b). We then tested all combinations of our
five variables using additive models including the global
model (XWOOd + road + income + building + land use)‘ There were
few observations of cats in commercial and institutional
areas so we pooled these two categories to increase statistical
power (Table 1). We used AIC to determine which hypothe-
sis held the most support given the data under the principle
of parsimony to explain the density of free-roaming cats in a
large urban areas (Burnham & Anderson 2002).

We used parametric bootstrapping to evaluate the good-
ness-of-fit of the best model by simulating 200 data sets
from our model and refit the model to compute a fit statistic
(Sillett er al., 2012). We compared the fit of the observed
data set to the distribution obtained from the simulations
using the Freeman-Tukey statistic available in wunmarked
(Fiske & Chandler, 2011). Following convention, we
assumed the top model to fit the data if the observed value
was not beyond the 0.05 percentile of the reference distribu-
tion.

We then used the best model to predict free-roaming cat
abundance at each of the 8153 cells in the city, given the
parameter estimates from our model and the spatial covari-
ates, to produce a spatially explicit observed free-roaming
cat density map. We then adjusted the observed estimate to
account for the proportion of cats available during sampling
by dividing each grid cell by ¢, as explained above.
We used the sum of the expected abundances across the city
as the estimate of total population size and calculated
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uncertainty in our estimate using a parametric bootstrap with
200 simulations (Sillett et al., 2012).

Independent estimate of indoor-outdoor
cat population size

A common approach to estimate population size of owned
cats is to survey a sample of households about the number
of cats they own and then extrapolate these data across large
geographical areas with a known number of households
(Sims et al., 2008; Murray et al., 2010; Canadian Federation
of Humane Societies 2012; Downes et al., 2013). The num-
ber of indoor-outdoor cats was considered the product of the
number of households, the estimated number of owned cats
per household and the probability of owned cats having
access to the outdoors in Guelph. In collaboration with the
Guelph Cat Population Taskforce, 115 random surveys of
citizen living in Guelph were conducted between December
5, 2014 and May 20, 2015 and asked how many cats they
owned and if these cats have access to the outdoors. We
approached citizens at the public library, farmers market, and
at a bowling alley/retail store complex (Supporting Informa-
tion Table S2). We fit two intercept-only models using these
data. The first was a quasipoisson generalized linear model
to estimate the number of cats per household and the second
was a binomial generalized linear model to estimate the
probability of owned cats having access to the outdoors. The
total number of households in Guelph (54 725) was derived
from 2011 census data (Statistics Canada 2011). Finally, we
multiplied the average number of cats per home and propor-
tion of outdoor cats with associated confidence interval by
the number of households to derive the number of outdoor
cats in Guelph. We assumed that no respondents were mem-
bers of the same household. The citizen questionnaire survey
received Research Ethics Board Approval from the Univer-
sity of Guelph (REB#14JN012).

Results

Free-roaming cat transects

We conducted 145 transects and observed 100 cats on the
first replicate and 79 cats on the second replicate among the
different land uses (Table 1). Most cats were observed in
residential areas or industrial areas with few cats observed in
commercial areas, institutional areas and parks (Table 1).
Residential areas were the most common land use (47%) fol-
lowed by parks (24%), industrial (14%), institutional (10%)
and commercial areas (5%) (Fig. 1). Left-truncation removed
six observations from the final data set used in the analysis
(Supporting Information Fig. S1).

Model selection and goodness of fit

Detection probability was best explained by variation
between residential and parks compared to commercial,
industrial and institutional land use categories (Supporting
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Information Table S3). At a given distance, the probability
of detection was lower for residential areas and parks com-
pared to commercial, institutional and industrial areas
(Fig. 2). In fact, the perpendicular distance corresponding
with the 50% detection probability was more than two times
further for commercial, industrial and institutional areas
(39.4 m) compared to residential/parks areas (19.0 m) and
did not overlap over the entire viewing distance (Fig. 2).

Free-roaming cat population abundance was best explained
by land use, median income, building density and distance
to wooded areas (Table 2). The most parsimonious model
accounted for 59% of the AIC weight while the global
model, which included distance to roads, held an additional
28% of the AIC weight indicating a large number of vari-
ables explain free-roaming cat abundance (Table 2). Cat
abundance was highest in residential areas, moderate in
industrial areas and parks, and lowest in commercial and
institutional areas, negatively related to median income, posi-
tively related to distance from woods, and positively related
to building density (Table 3). The bootstrap P-value from
the goodness-of-fit simulations for the best-fitting model
(Table 2) was P = 0.46 suggesting that the negative-binomial
model, and the associated dispersion parameter (Table 3),
adequately fit the data.

Free-roaming cat population size and
density

Estimated abundance from the transect data was 389 (95%
bootstrap CI: 312-506). After adjusting for the proportion
of cats that could have been observed, the total free-roam-
ing cat population size for the city of Guelph was esti-
mated to be 7662 (95% CI: 6145-9966). Cat population
density was the highest in high-density low-income residen-
tial neighbourhoods that were further from wooded areas
(Fig. 3). The lowest population densities were in low-den-
sity high-income commercial/institutional lands near wooded
areas (Fig. 3). Spatial heterogeneity of predicted free-roam-
ing cat population density across the city was dramatic and
showed several hotspots of maximum density (49.4 cats per
ha; Fig. 4).

Table 2 Comparison of models (AAIC < 10) to explain free-roaming
cat density (A) in Guelph, ON

Model AIC AAIC  w; K

Wood + income + building + land use 5241 0 0.59 10

Wood + road + income + building + land  525.7 1.51 0.28 11
use

Wood + building + land use 527.8 3.69 009 9

Wood + road + building + land use 529.8 561 0.04 10

Specific variables are indicated in Table 3. The information for each
hypothesis includes the Akaike information criterion value (AIC), dif-
ference in AIC compared to the top model (AAIC), Akaike weight
(w)) and number of model parameters (K). The full candidate model
list is presented in Supporting Information (Table S3).

Animal Conservation ee (2016) ee—ee © 2016 The Zoological Society of London
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Table 3 Parameter estimates from the model
Xwood + income + building + land use pResldfParK,Other to explain observed

free-roaming cat population abundance in Guelph, ON

Submodel Coefficient Est. (se)
Abundance, In Wood 0.418 (0.0953)
) Income —0.409 (0.163)
Building 0.664 (0.163)
Commercial/institutional —5.482 (0.509)
Industrial —3.107 (0.300)
Parks —3.900 (0.515)
Residential —2.938 (0.233)
Detection, In(c)  Commercial/institutional/ 3.51 (0.176)
industrial
Residential/parks 2.78 (0.066)
Dispersion, o 1.51 (0.681)

Note that slopes of the linear covariates are for the standardized
values of income, wood and building.

Independent indoor-outdoor cat population
size

The number of cats owned per household in Guelph was
0.52 (95% CI: 0.39-0.70) and the probability of an owned
cat having outdoor access was 0.42 (95% CI: 0.30-0.54).
When taken together, this resulted in an estimate of 11 927
(CI: 6361-20 989) owned indoor-outdoor cats in Guelph in
2014, which overlaps with our free-roaming cat population
estimate of 7662 from the distance-based sampling.

Finally, we validated the proportion of cats available for
detection by dividing our city-wide free-roaming cat popula-
tion estimate derived from distance sampling (389 cats) by
our independent estimates of indoor-outdoor population size
in Guelph. The mean detection was 0.033 (95% CI: 0.019—
0.061) which overlapped the lower end of the estimate from
Schmidt et al. (2007b; ¢ = 0.051; 95% CI: 0.034-0.075).
Our data suggest, if these findings are representative, a rule
of thumb is for each free-roaming cat seen in Guelph, a fur-
ther 16-54 cats are not seen.

Discussion

Using distance-based sampling that accounted for imperfect
detection, we found cat abundance differed between land
uses, declined with increasing median income levels and
increased with distance to both wooded areas and building
density. Our population estimate of 6145-9966 cats is the
first empirical estimate of free-roaming cat population size
across a large urban area that provides an ecological context
to assess the magnitude of risks posed by cats to urban wild-
life and public health as well as provides a baseline for
assessing the impact of various approaches to cat population
management. Importantly, our distance-based approach over-
laps an independent estimate based on a randomized survey
of citizens and aligns with previously published parameters.
Our map of predicted population density avoids spatial-
biases that may arise in non-randomized data collection
schemes (Aguilar & Farnworth, 2012, 2013; Reading, Scar-
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Figure 3 Expected free-roaming cat population density after adjust-
ing for availability for each land use as a function of covariates from
the top model. (a) Negative relationship between income and free-
roaming cat population density when distance to wooded areas and
building density is constant at 0. (b) Positive relationship between
distance to wooded areas and free-roaming cat density when income
and building density is constant at 0. (c) Positive relationship
between building density and free-roaming cat density when income
and distance to wooded areas is constant at 0.
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lett & Berliner, 2014) or homeowner-based surveys that are
restricted to residential areas (Sims et al., 2008; Murray
et al., 2010) and, therefore, provides managers with unbiased
information for targeting interventions to address abundant
cats in urban areas.

Land use is predicted to be an important attribute to
understanding free-roaming cat population dynamics (Crooks
& Soulé, 1999; Odell et al., 2003). We found residential
areas to have the highest densities of cats and commercial
and institutional lands to have the lowest. Intuitively, this
makes sense if many of the cats we observed during tran-
sects were indoor-outdoor cats (Sims ef al., 2008) as we
assumed in our study. The negative relationship with income
implies that socio-economic level influences the number of
owned cats, the probability that cats will be let outdoors, or
the rate of sterilization that define fecundity. Previous
research has found no relationship between household
income and cat ownership (Murray et al., 2010) or employ-
ment level, a proxy for socio-economic level, and the proba-
bility owned cats will have access to outdoors (Clancy et al.,
2003). In contrast, the probability of an owned cat being
sterilized increases with socio-economic level (Chu, Ander-
son & Rieser, 2009; Finkler er al., 2011a). Taken together,
our results suggest higher free-roaming cat abundance may
result from increasing breeding opportunities (Finkler ez al.,
2011b) in addition to access to human-derived food
resources (Calhoon & Haspel, 1989). These relationships,
akin to those often posed for wildlife, suggest that free-
roaming cat abundance may be partially driven by bottom-up

D. T. T. Flockhart, D. R. Norris and J. B. Coe

Figure 4 Predicted free-roaming cat den-
sity (cats per ha), after adjusting for the
availability of cats to be observed during
sampling, for Guelph, ON, as a function of
income, land use and distance to wooded
areas and building density from the top
model used to explain the abundance of
free-roaming cats.

processes. If so, then it is important to consider that limiting
food availability may be an effective intervention to reduce
the resources available to free-roaming cats.

In contrast, the distribution of predators, such as coyotes,
may impose top-down limitation on free-roaming cat popula-
tions in urban areas (Crooks & Soulé, 1999; Taylor ef al.,
2002; Kays et al., 2015). We found a positive correlation
between the abundance of cats and distance from wooded
areas. The assumption that wooded areas present suitable
habitat for coyotes in cities is based on data that show coy-
otes select wooded habitats (Atwood et al., 2004; Gese
et al., 2012), avoid urban development (Gehrt, Anchor &
White, 2009) and influence prey community structure within
patches (Crooks & Soulé, 1999). Collectively, these data
imply that predation risk is lower with increased distance to
wooded areas. These top-down processes, however, remain
unlikely to result in strong predator-prey regulation given
disparity of the negative correlation between coyote-human
space use (Gehrt et al., 2009; Kays er al., 2015) and the
positive correlation between cat-human space use from our
analysis (Crooks & Soulé, 1999). Thus, if land use reflects
bottom-up processes that control cat abundance via food
availability, it implies that the susceptibility to predation
depends on cat behaviour and level of dependence of
human-provided food.

Admittedly, the results we present linking free-roaming
cat abundance to environmental covariates is correlational
and assumes a priori causal relationships based on previous
research. While our results, and the direction of the pro-
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posed relationships, were consistent with the predictions of
bottom-up and top-down control of population abundance,
experimentally testing the proposed underlying mechanisms
and potential confounding variables that limit cat popula-
tions presents a significant challenge. A feasible test of the
assumptions of the hypotheses explaining free-roaming cat
abundance might include collecting data on top-down fac-
tors such as coyote abundance (Crooks & Soulé, 1999;
Gehrt et al., 2009; Lukasik & Alexander, 2011; Kays et al.,
2015), and bottom-up factors such as wild prey abundance
(Crooks & Soulé, 1999; Fuller er al., 2008; Hepinstall, Mar-
zluff & Alberti, 2009) and the distribution of sterilized cats.
Meta-analyses sampling a large number of cities would be
one effective way to test the generality of top-down or bot-
tom-up processes. This approach should be paired with
small-scale studies focused on variables that confound diag-
nosis of top-down or bottom-up processes. For instance
wild prey composition and abundance may differ by forest
patch size, location, or proximity to residential
(Hepinstall ef al., 2009), which would imply bottom-up
rather than top-down processes determine free-roaming cat
abundance.

Free-roaming cats are comprised of stray, feral and
owned (indoor-outdoor) individuals, which behave differ-
ently. These categories are loose definitions that usually
relate to the dependence on humans for food resources,
level of socialization and daily activity patterns (Levy &
Crawford, 2004). The result is that each group may have
different probability of detection or temporary emigration
based on activity patterns (Clancy et al., 2003; van Heezik
et al., 2010) and movement rates (Schmidt et al., 2007a;
Horn et al., 2011). In this paper, we suggest the concept
of temporary emigration can have two meanings for owned,
free-roaming cats. As per the usual definition, cats could
move away from the sampling area and be unavailable to
be counted (Chandler et al., 2011). In addition, they could
be ‘removed’ or ‘added’ from the sampling area by owners
taking cats inside or letting them out at prescribed times of
the day (Clancy et al., 2003). Few data exist to estimate
these parameter values a priori, although they likely war-
rant further investigation given both addition-removal and
temporary emigration will influence estimates of abundance
(Chandler et al., 2011). While we ignored categorizing cats
in our analysis, we nevertheless corrected for the effects of
addition-removal of indoor-outdoor cats given that many of
the cats that we observed were well socialized to people.
However, to fully quantify population dynamics amongst
all components of the free-roaming cat population, it would
be wise to consider these group-level effects using several
individual-based capture-recapture studies to derive proba-
bilistic assignment of individuals to categories (Kendall,
Hines & Nichols, 2003; Choquet, Lauriane & Pradel,
2009).

Our approach used simple geographical information that is
readily available for most urban areas in North America to
predict free-roaming cat population size. For example land
use categories from municipalities and socio-economic

areas

Animal Conservation ee (2016) ee—ee © 2016 The Zoological Society of London

Free-roaming cat density

metrics from census data are available for most large cities
in North America and our analysis suggest that multiple fac-
tors better explain free-roaming cat abundance compared to
considering cat abundance to be constant (Schmidt et al.,
2007b). The benefit of using this approach is that quickly
and easily obtainable data can be applied to understand and
estimate the abundance of free-roaming cats across time and
space for almost any city in North America with a minimal
amount of field data. These efforts would contribute to
understanding the spatio-temporal impact of free-roaming
cats on wildlife viability (Sims et al., 2008; van Heezik
et al., 2010) because they are independent of cat abundance
estimates based strictly on homeowner surveys that are
restricted to only a portion of the urban landscape (residen-
tial lands occupy <50% of the land area of Guelph) and can
be overlapped with spatial occupancy and abundance patterns
of different wildlife species (e.g. Hepinstall et al., 2009) to
assess risk. Unfortunately, few data are available for compar-
isons with our study, so it is possible that different factors
explain cat populations in different areas or how variation in
methodology may yield different results.

Understanding the factors that explain cat population
dynamics informs where and how management might pro-
ceed most efficiently to reach multiple societal objectives
(Loyd & DeVore, 2010; Martin et al., 2010). Achieving col-
lective support amongst citizens, animal welfare advocates,
environmental activists and policy makers demand that we
acquire, and make use of, this information to implement sev-
eral interventions across space and time, to account for how
population density is regulated (Yokomizo et al., 2009) and
to address often conflicting objectives (e.g. Chades, Curtis &
Martin, 2012). This is especially true when interventions to
manage overabundant cats, both to reduce environmental
impacts coupled with a concern for humane alternatives, are
considered in isolation. For example attempts to reduce pop-
ulation size through attrition by sterilizing feral cats could be
ineffective where individuals disperse (Schmidt ez al., 2009;
Miller et al., 2014) or if colonies of sterilized cats are more
prone to immigration by unsterilized cats (Gunther, Finkler
& Terkel, 2011). If dispersal is density-dependent (Matthy-
sen, 2005), local density is mediated through predator distri-
bution (Crooks & Soulé, 1999; Kays et al., 2015) and, as
our study suggests, food availability and breeding opportuni-
ties, then single strategies to address abundant cats in urban
areas are unlikely to result in the optimal allocation of
resources.
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